Human epidermal keratinocytes undergo (-)-epigallocatechin-3-gallate-dependent differentiation but not apoptosis.

نویسندگان

  • Sivaprakasam Balasubramanian
  • Michael T Sturniolo
  • George R Dubyak
  • Richard L Eckert
چکیده

Epigallocatechin-3-gallate (EGCG) is an important chemopreventive agent derived from green tea. We recently reported that EGCG treatment enhances keratinocyte differentiation as evidenced by increased human involucrin promoter activity [Balasubramanian,S., Efimova,T. and Eckert,R.L. (2002) J. Biol. Chem., 277, 1828-1836]. In the present paper, we extend these findings and show that EGCG also increases the expression of other differentiation markers-procaspase 14 and type I transglutaminase (TG1). Both TG1 mRNA and protein level, and activity are increased by treatment with EGCG. Increased TG1 activity is evidenced by a direct transglutaminase assay, and by the ability of EGCG to stimulate the covalent incorporation of fluorescein cadaverine substrate into crosslinked intracellular structures. In contrast, type II transglutaminase levels are not altered by EGCG treatment. We also assessed whether EGCG promotes keratinocyte apoptosis. We show that EGCG treatment does not promote the cleavage of procaspase-3, -8, -9 or poly(ADP-ribose) polymerase. Moreover, treatment with the pan-caspase inhibitor, Z-VAD-FMK, does not reverse the EGCG-associated reduction in cell viability. In addition, there is no increase in cells having sub-G(1)/S DNA content, and no evidence for the release of cytochrome c from the mitochondria. These findings confirm, using several endpoints, that EGCG treatment enhances normal keratinocyte differentiation but does not promote apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Green tea polyphenols induce differentiation and proliferation in epidermal keratinocytes.

The most abundant green tea polyphenol, epigallocatechin-3-gallate (EGCG), was found to induce differential effects between tumor cells and normal cells. Nevertheless, how normal epithelial cells respond to the polyphenol at concentrations for which tumor cells undergo apoptosis is undefined. The current study tested exponentially growing and aged primary human epidermal keratinocytes in respon...

متن کامل

Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells.

BACKGROUND AND PURPOSE The polyphenolic compounds present in green tea show cancer chemopreventive effects in many animal tumor models. Epidemiologic studies have also suggested that green tea consumption might be effective in the prevention of certain human cancers. We investigated the effect of green tea polyphenols and the major constituent, epigallocatechin-3-gallate, on the induction of ap...

متن کامل

Elevated polyamines lead to selective induction of apoptosis and inhibition of tumorigenesis by (-)-epigallocatechin-3-gallate (EGCG) in ODC/Ras transgenic mice.

Tea polyphenolic constituents induce apoptosis in cancer cells but not in normal cells. To study the mechanism of this selective effect, we used the ornithine decarboxylase (ODC)/Ras double transgenic mouse model that develops spontaneous skin tumors due to over-expression of ODC and a v-Ha-ras transgene. Administration of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) in the dr...

متن کامل

Differentiation-Inducing Activity of the Phyto-polyphenols Epigallocatechin-3-gallate and Kaempferol on NB4 Cells

Background and Objective: The rate of survival in acute promyelocytic leukemia (APL) can dramatically improve, if the patients receive all-trans-retinoic acid (ATRA) treatment. However, this drugchr('39')s toxicity is a major problem in APL treatment. Previous researches have demonstrated that phyto-polyphenols such as epigallocatechin gallate (EGCG) and kaempferol cause apoptosis in hematopoie...

متن کامل

Epigallocatechin-3-O-(3-O-methyl)-gallate-induced Differentiation of Human Keratinocytes Involves Klotho-Mediated Regulation of Protein Kinase-cAMP Responsive Element-Binding Protein Signaling

(-)-Epigallocatechin-3-O-gallate (EGCG) has long been known as a potent inducer of keratinocyte differentiation. Although its molecular mechanisms have been extensively studied, its actions on human skin remain to be elucidated. In this study, we demonstrated that methylated EGCG and EGCG increase the expression of klotho, and that klotho functions as a downstream target of EGCG and methylated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 26 6  شماره 

صفحات  -

تاریخ انتشار 2005